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Hypoxia:
The Force that Drives Chronic Kidney Disease

Qiangwei Fu, MD; Sean P. Colgan, PhD; and Carl Simon Shelley, DPhil

In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions 
in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are 
disproportionally high. Consequently, as life expectancy increases and the baby-boom generation 
reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is 
set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A 
large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development 
of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is 
the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one 
of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing 
a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition 
by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from 
leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it 
has been demonstrated that leukocytes also become activated independent of the hypoxic response 
of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes 
directly sensing hypoxia and responding by transcriptional induction of the genes that encode the 
β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by 
which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional 
mechanisms would appear to represent a promising new therapeutic strategy.
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s ince the beginning of renal replacement therapy for end 
stage renal disease (ESRD) through dialysis or 

transplantation, the number of patients treated for terminal 
kidney failure worldwide has continued to grow at an annual 
rate of approximately 7%.1-3 This is far in excess of the annual 
1% growth rate of the world population in general. In 2012, a 
survey of 7 billion people spanning over 230 countries was 
undertaken.1 This survey found that 3,010,000 patients were 
being treated for ESRD. Of these, 652,000 were living with a 
donor organ, and 2,358,000 were on dialysis treatment. 

In 2011, the United States spent over 49 billion dollars 
treating nearly eleven times more ESRD patients than in 
1980.4 This trend shows no sign of slowing down.4 In 2003, 

the prevalence of chronic kidney disease (CKD) in the US 
adult population was 11% (19.2 million). Of these patients, an 
estimated 5.9 million individuals had stage 1; 5.3 million had 
stage 2; 7.6 million had stage 3; 400,000 individuals had 
stage 4; and 300,000 individuals had stage 5, or kidney 
failure.5

The incidence of ESRD has already reached epidemic 
proportions in the United States. Furthermore, the rates of 
ESRD among the elderly are disproportionably high. 
Consequently, as life expectancy increases and baby-boomers 
retire, the already heavy burden imposed by ESRD on the US 
health care system is predicted to increase dramatically. 
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The main cause of ESRD is CKD. This in turn is driven by a 
constellation of interlinked risk factors. Primary amongst these 
factors are anemia,6-9 diabetic hyperglycemia,10-12 
hypertension,13-17 hypercholesterolemia,18-20 cigarette 
smoking,21-27 air pollution,28-42 atherosclerosis,43-52 repeated 
episodes of acute kidney injury,53-70 and sleep apnea.71-87 All the 
risk factors associated with CKD produce inappropriately low 
oxygen tensions within the kidney. On the basis of this 
association, Fine et al88 proposed in 2000 that chronic hypoxia 
is the final common pathway that leads to the development of 
end-stage renal failure. Subsequently, this theory has been 
validated by numerous studies.89-99 Particularly informative 
have been recent experiments where kidney oxygen tension 
has been reduced with dinitrophenol without affecting markers 
of oxidative stress. Under these circumstances urinary protein 
excretion, inflammatory cell infiltration into the kidney, and 
renal epithelial-to-mesenchymal transition were all 
increased.100,101 Consequently, there appears to be a direct link 
between hypoxia and the progression of CKD.
 
Causes of Kidney Hypoxia
In relation to their weight, the kidneys are the best-perfused 
organs of the body.102 Paradoxically, however, oxygenation of 
the renal parenchyma is poor, with oxygen tensions in the 
renal cortex averaging 30 mm Hg and those in the renal 
medulla being below 10 mm Hg.103,104 The reason for this 
dramatic contrast between oxygen supply and oxygenation is 
due both to the way the kidney is built and to the function it 
performs. With regard to kidney structure, arterial and venous 
pre-glomerular and post-glomerular vessels run strictly parallel 
and in close contact to one another over long distances. This 
parallel architecture drives the diffusion of oxygen from 
arterioles to the post-capillary venous system before it can 
enter the capillary bed.104,105 Compounding the problem of 
oxygen delivery is that the rate of regional blood inflow to the 
inner and outer medulla is lower than that to the renal cortex.106 
Furthermore, the acute angle between the interlobular artery 
and the afferent arterioles supplying juxtamedullary glomeruli 
causes the capillary hematocrit in the medulla to be dramatically 
lower than that in the cortex. This is due to a phenomenon 
termed plasma skimming, in which erythrocytes that are 
primarily in the center of vessels continue to flow in the 
interlobular artery towards the superficial cortex, while the 
plasma in the periphery of the capillary is captured by the 
juxtamedullary afferent arterioles and ultimately flows into 
vasa recta.107,108 In addition to the architecture of the kidney 
limiting oxygenation, kidney tubules are characterized by a 
limited ability to generate energy under anaerobic conditions, 
causing oxygen to be consumed rapidly in the metabolic 
processes involved in active salt reabsorption. Consequently, 
the twin constrains of low oxygen supply dictated by renal 
structure and high oxygen demand dictated by renal function 
conspire to make the kidney particularly vulnerable to 
physiologic and environmental stresses that cause ischemia. 

Anemia 
Anemia has long been known to be an independent physiologic 
risk factor for the development of CKD.6-9 The obvious way in 
which anemia impacts unfavorably on renal oxygenation is 
that it is characterized by fewer erythrocytes in the circulation 
and consequently blood with a reduced oxygen-carrying 
capacity. The Epo-TAgh transgenic mouse has severe anemia 
caused by targeted disruption of the gene encoding 
erythropoietin (EPO).109 Consistent with the connection of 
anemia to the development of CKD, the Epo-TAgh mouse 
mimics CKD pathology by exhibiting renal hypoxia.9,109 In 
addition, EPO administration has been shown not only to 
correct anemia but also protect against ischemia-induced 
kidney damage.110-112 This protective effect could clearly stem 
from enhanced delivery of oxygen by an increased mass of 
erythrocytes. However, the renoprotective ability of EPO also 
appears to be due to mechanisms independent of its ability to 
increase red blood cell production.113,114 Here EPO binds a 
heterodimer on the surface of renal cells composed of the EPO 
receptor and CD131.115 This binding then elicits a cascade of 
intracellular signaling events involving the dephosphorylation 
of p38 mitogen-activated protein kinase and the phosphoryla-
tion of Janus kinase 2, signal transducer and activator of 
transcription 5, serine/threonine protein kinase B, serum and 
glucocorticoid-regulated kinase 1 and glycogen synthase 
kinase 3β.113,114,116,117 The net result of these events is that 
apoptosis is inhibited through reduced expression of pro-
apoptopic nuclear factor-κB and Bcl-2-like protein 4 and 
increased expression of the anti-apoptopic molecules B-cell 
lymphoma 2, B-cell lymphoma extra-large and X-linked 
inhibitor of apoptosis protein.113,114,118-122 In addition, EPO 
effects renoprotection by ameliorating oxidative stress through 
increased expression of glutathione peroxidase, superoxide 
dismutase and endothelial nitric oxide synthase.113,123 EPO also 
down-regulates the ability of renal tissue to produce increased 
levels of intercellular adhesion molecule 1 and proinflammatory 
cytokines and chemokines in response to ischemia. As a 
consequence, renal tissue is less susceptible to attack by 
neutrophils and macrophages.121,122

Hyperglycemia 
Diabetic patients with poorly controlled blood glucose levels 
are at high risk of developing renal dysfunction, and diabetes-
induced renal complications are a major cause of morbidity 
and mortality.124,125 Diabetes is associated with decreased renal 
oxygen tension.11 Several mechanisms have been implicated 
in driving this process. Hyperglycemia induces the formation 
of reactive oxygen species by renal mitochondria, nicotinamide 
adenine dinucleotide phosphate oxidase, and uncoupled nitric 
oxide synthase.10 The reactive oxygen species superoxide then 
directly interacts with nitric oxide, forming peroxynitrite and, 
thus, reducing nitric oxide bioavailability. A process 
independent of reactive oxygen species decreases L-arginine, 
further reducing the bioavailability of nitric oxide.11 Reduced 
nitric oxide and increased reactive oxygen species 
independently both lead to increased oxygen consumption.11 
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In addition, reduced nitric oxide causes vasoconstriction that 
limits renal blood perfusion and, therefore, oxygen delivery.12 
Hyperglycemia also limits renal perfusion by narrowing the 
diameter of arterioles within the glomerulus through inducing 
extracellular collagen accumulation and the proliferation of 
mesangial, distal tubular epithelial, and vascular smooth 
muscle cells.126-129 The molecular mechanism by which this is 
achieved involves hyperglycemia producing sustained 
activation of protein kinase C and nuclear factor kappa-light-
chain-enhancer of activated B cells that in turn stimulates the 
release of osteopontin.129-134 This growth factor then binds and 
activates its β3-integrin receptor that signals to induce the 
synthesis of both DNA and collagen.129,135 An additional 
consequence of hyperglycemia inducing protein kinase C is 
that this increases expression of intercellular adhesion 
molecule 1 by mesangial cells, thus promoting glomerular 
damage effected by infiltrating mononuclear cells.133 The link 
between hyperglycemia, renal hypoxia, and the development 
of CKD is further evidenced by analysis of the obese db/db 
mouse model of diabetic nephropathy.136 This model exhibits 
hyperglycemia, increased production of reactive oxygen 
species, loss of capillaries, arteriolar constriction, and a 
decrease in resting and maximum blood flow.136-139 Consistent 
with these characteristics causing kidney damage through 
hypoxia, the db/db mouse shows increased glomerular 
expression of hypoxia-inducible factor 1 (HIF-1) and other 
genes involved in oxidative stress.140

Hypertension 
The hallmark of systemic hypertension is chronic induction 
of multiple vasoconstrictors including the renin-angiotensin-
aldosterone system, constrictor prostaglandins and 
endothelin.141‑143 Constriction of blood vessels limits blood 
flow and consequently reduces oxygen delivery to the 
kidney.14-17 In addition, hypertension leads the kidney to 
consume approximately twice as much oxygen as normal to 
transport a given amount of sodium.16 Consequently, the 
combination of reduced oxygen delivery caused by 
vasoconstriction and increased oxygen demand caused by 
aberrant metabolism results in lower renal oxygenation. 
Specifically, the oxygen tension of the kidney cortex and 
medulla has been shown to be approximately 10 mm Hg 
lower than normal in spontaneously hypertensive rats and 
other models of hypertension as well as in hypertensive 
patients.15,89,144-146 The role of hypertension in the progression 
of CKD was first described in 1914 by Volhard and Fahr.13 
Subsequently, it was appreciated that hypertension predisposes 
to kidney failure by inducing renal hypoxia.147,148 The 
detrimental effects of hypoxia are exacerbated by hypertension 
also inducing kidney tissue to generate elevated levels of 
reactive oxygen species such as superoxide, hydrogen 
peroxide, peroxynitrite, and hydroxyl radicals.149 These 
species are formed by elevated intrarenal angiotensin II 
binding type 1 angiotensin II receptors that then transduce 
signals to activate the pro-oxidant enzyme nicotinamide 
adenine dinucleotide phosphate-oxidase.150,151 The generation 
of reactive oxygen species is further augmented by decreased 

expression of the anti-oxidant enzymes superoxide dismutase 
1 and 3 and isoforms of nitric oxide synthase.151 The reactive 
oxygen produced as a consequence of hypertension acts in the 
same way as that generated during hyperglycemia to drive 
renal hypoxia. That renal hypoxia caused by hypertension 
directly contributes to the development of CKD is 
demonstrated by angiotensin receptor blockers, angiotensin- 
converting enzymes, and the anti-oxidant tempol all 
normalizing renal oxygenation and function in hypertensive 
rats.15, 16, 148, 152-154

Hypercholesterolemia 
High cholesterol levels have been shown to correlate with 
reduced renal oxygenation and increased kidney damage in 
response to ischemia.155-157 One mechanism by which 
cholesterol likely drives these processes is through its role in 
determining the physical properties of the cell surface. 
Cholesterol constitutes the non-polar, hydrophobic lipid of 
the enveloping layer of the erythrocyte membrane. This 
cholesterol is in equilibrium with the concentration of plasma 
cholesterol. Consequently, as the concentration of plasma 
cholesterol increases so does the cholesterol content of the 
erythrocyte membrane. Under such circumstances the fluidity 
of the membrane decreases and the lipid shell stiffens. This 
produces a greater barrier to oxygen diffusion that both 
delays oxygen entry into the erythrocyte during saturation 
and delays oxygen release during desaturation.18-20 Indeed, the 
percentage change in blood oxygen diffusion has been found 
to be inversely proportional to plasma cholesterol 
concentration.18 Consequently, cholesterol contributes to renal 
hypoxia by reducing the erythrocyte capacity to both load and 
release oxygen. Hypercholesterolemia also results in lipid 
deposition in kidney tissue.158 Thus, oxygen delivery by 
diffusion is again compromised. Furthermore, lipid deposition 
in renal arteries increases their stiffness and reduces their 
ability to dilate and deliver an augmented blood flow when 
oxygen tensions are low.159,160 Besides contributing to renal 
hypoxia through its physical properties, cholesterol also 
likely contributes through its metabolism. Resistance to 
hypoxia-induced kidney damage has been shown to be 
mediated by increased de novo synthesis of esterified 
cholesterol and the cholesterol transport protein 18 KDa 
translocator protein.161-163 However, chronically high 
cholesterol levels repress expression of both these molecules, 
so compromising cytoprotection during ischemia.164-167

Cigarette Smoking
Both active and passive cigarette smoking have been found to 
be independent risk factors for the de novo development of 
CKD in healthy subjects.168-176 Cigarette smoking is also a 
major risk factor for the initial development or worsening of 
preexisting CKD in patients with human immunodeficiency 
virus infection, chronic obstructive pulmonary disease, 
diabetes, diabetic nephropathy, hypertension, autosomal 
polycystic kidney disease, primary glomerulopathies, lupus 
nephritis, and those who are obese or who have undergone a 
lung transplant.177-187 In addition, smoking by either the donor 
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or recipient has been shown to adversely influence the 
function and survival of transplanted kidneys and overall 
patient survival.170,171,188,189 Allograft survival and function 
both worsen with increasing pack-years smoked. The number 
of cigarettes smoked correlates directly with the severity of 
renal dysfunction and the likelihood that either CKD will 
develop or a kidney allograft will fail.24,168,170,181,190 Conversely, 
smoking cessation reduces the risk of developing CKD and is 
of benefit to patients where the condition pre-exists.176,190,191 
Mainstream cigarette smoke has been said to contain 4,000 or 
more constituents.22-24,192  Some of these, like cadmium and 
lead, are directly nephrotoxic.193,194 Other constituents like tar, 
carbon monoxide, nicotine, and reactive oxygen species, 
effect kidney damage by compromising oxygenation. The 
accumulation of tar in the lung results in a physical barrier 
that impairs gas exchange within alveoli. Consequently, 
carbon dioxide is less effectively released and oxygen less 
effectively acquired by erythrocytes. In addition, tar further 
reduces oxygen availability to erythrocytes by inducing 
inflammatory reactions that demand increased oxygen 
consumption.22 The carbon monoxide in cigarette smoke 
reversibly binds various heme-containing proteins within the 
body. These proteins include hemoglobin, myoglobin, 
cytochrome P450, and cytochrome oxidase that are responsible 
for oxygen transport. Since the bond formed between heme 
and carbon monoxide is less dissociable than the heme-
oxygen bond, severe disruption of normal oxygen transport 
can occur.26,27 The nicotine of cigarette smoke induces 
degradation of nitric oxide and stimulates parasympathetic 
nerves. Both these processes constrict the vasculature, so 
limiting blood flow and oxygen delivery to the kidney.21,25 In 
addition, nicotine binds a range of nicotinic acetylcholine 
receptors expressed by mesangial, endothelial, vascular 
smooth muscle, and renal proximal and distal tubule cells.195-198 
These receptors are expressed under normoxic conditions but 
are induced by both transient and chronic hypoxia.199,200 Upon 
nicotine binding, receptors mediate activation of protein 
kinase C that in turn activates nicotinamide adenine 
dinucleotide phosphate-oxidase to produce reactive oxygen 
species.195,196,201-204 Stable compounds within cigarette smoke, 
such as acrolein, also induce endothelial production of 
reactive oxygen species through activation of nicotinamide 
adenine dinucleotide phosphate-oxidase.205 These oxygen 
species then act in the same way as those generated through 
hypertension and hyperglycemia to drive renal hypoxia and 
kidney damage. In addition, the reactive oxygen species 
produced in response to nicotine also induces mesangial cell 
proliferation and extracellular matrix deposition through 
pathways that involve increased expression of cyclooxygenase 
2-derived prostaglandins and increased phosphorylation of 
extracellular signal-regulated protein kinases 1 and 2, c-Jun 
N-terminal kinases, activator protein 1, and protein kinase 
B.195,196,204,206-210 This aberrant proliferation and deposition 
mirrors the protein kinase C dependent processes by which 
hyperglycemia constricts glomerular arterioles to limit blood 
flow and, hence, oxygen delivery to the kidney. In an 
additional mirror of hyperglycemia, nicotine also promotes 

hypoxia by facilitating oxygen-consuming inflammation. 
This occurs through increased expression of unphosphorylated 
signal transducer and activator of transcription 3 that induces 
renal proximal tubule cells to secrete the pro-inflammatory 
cytokine transforming growth factor β1 and the pro-
inflammatory chemokine monocyte chemotactic protein 1.210 
Finally, with a higher daily number of cigarettes smoked or a 
longer duration of smoking the risk of developing hypertension 
increases.211-213 Consequently, it is logical to assume that 
beyond its own specific mechanisms of inducing hypoxia-
mediated CDK, cigarette smoking also utilizes those manifest 
in hypertension.

Air Pollution 
The ready access of the lungs and blood stream makes them 
unusually susceptible to the deleterious effects of airborne 
pollutants.28,29 Carbon monoxide breathed passively from 
second-hand smoke or atmospheric pollution can produce 
hypoxic affects similar to those produced by active cigarette 
smoking.27 Nitrogen dioxide and sulphur dioxide may render 
hemoglobin useless for oxygen transport by driving its 
conversion to methemoglobin or sulfhemoglobin.29 Lead and 
arsine can damage the erythrocyte membrane resulting in 
anemia.29 Ozone is formed for the most part by the interaction 
between solar radiation and nitric oxides, carbon monoxide, 
and volatile hydrocarbons. These are the primary pollutants 
of traffic exhaust fumes. Ozone causes acute arterial 
vasoconstriction, reducing blood flow and limiting oxygen 
delivery.30 Ultrafine particles of aerodynamic diameter 0.1μM 
are emitted by diesel engines and can pass directly into the 
blood circulation, limiting oxygen delivery by inducing 
vasoconstriction, vascular inflammation, and increasing 
blood viscosity.30-32 Fine particles of 2.5 μM emitted by 
diesels accumulate within the pulmonary alveoli and cause an 
inflammatory reaction of the lung that is related both to their 
physical parameters and the oxidative stress generated by the 
organic and metallic compounds adsorbed onto their surface.33 
These compounds trigger the local production by macrophages 
and activated alveolar cells of inflammatory cytokines such 
as interleukin 6 and tumor necrosis factor α and the potent 
vasoconstrictor endothelin 1.30,32,33 As with diesel particles 
and cigarette tar, the dust produced from coal, silica, wheat, 
flax, and rice and the fibers originating from cotton, silk, 
fiberglass, and asbestos can build up in the lungs, limiting gas 
exchange and inducing oxygen-consuming inflammation.34-40 
Furthermore, dusts originating from agricultural products 
such as flax, cotton, rice, wheat, and wood are loaded with 
gram-negative bacterial endotoxin. Exposure to such 
endotoxin elicits chronic inflammation within the lungs that 
drives a long-term decline in their function.36-40 In summary, 
air pollution can reduce renal oxygenation through a host of 
mechanisms. These include the induction of oxygen-
consuming inflammation, that reduces the ability of the lungs 
to effect gas exchange, and anemia, vasoconstriction, and 
hemoglobin conversion that reduces the oxygen delivery 
capacity of the blood stream. That air pollution does indeed 
compromise kidney function is supported by the finding that 
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glomerular filtration is compromised by breathing heavy 
metals from copper smelters and by living in close proximity 
to major roadways.41,42 In addition, rats exposed to either the 
asbestos group member amosite or to passive smoking 
develop significant glomerulosclerosis and tubulinterstitial 
fibrosis, and occupational exposure to silica, fiberglass, or 
solvents has been linked to an increased risk of developing 
ESRD.35,214

Atherosclerosis	
Approximately six million Americans have combined 
atherosclerosis and kidney disease.47 The development of 
atherosclerosis stems from multiple interactions among 
injurious stimuli and the healing or reparative responses of 
the arterial wall.48 After endothelial injury, direct cell-cell 
interaction and the secretion of chemotactic and growth 
factors induce recruitment of monocytes to subintimal 
regions, smooth muscle proliferation and increased synthesis 
of matrix proteins. The recruited monocytes differentiate into 
macrophages, accumulate lipid and ultimately become foam 
cells. Together with accompanying T-lymphocytes, these 
changes represent the fatty streak, an early histopathological 
change indicating atherosclerosis. Progression of this 
atherosclerotic lesion is marked by the accumulation of 
alternating layers of smooth muscle cells and lipid-laden 
macrophages. The advanced lesions of atherosclerosis 
compromise the lumen diameter, reducing the blood flow in 
arteries and thus limiting kidney oxygenation.44-46,49-52 In the 
early stages of atherosclerotic renal artery stenosis progressive 
decreases in blood flow are accompanied by compensatory 
changes in arteriovenous shunting, and decreases in 
glomerular filtration rate and tubular reabsorption of sodium, 
that either increase oxygen availability or reduce its 
consumption. Within the whole kidney these adaptive 
mechanisms appear to maintain appropriate oxygenation.215 
However, direct measurements of intra-renal tissue 
oxygenation demonstrate the induction of regional hypoxia in 
the cortex, but especially the medulla.216-218 This heterogenous 
pattern of intra-renal hypoxia likely results from inherent 
differences in the physiology and vasculature of the renal 
cortex and medulla.219 These cause stenosis to induce localized 
microvascular dysfunction and rarefaction, inflammation, 
oxidative stress, and/or fibrosis.219-223 While reductions in 
oxygen consumption can maintain whole-kidney oxygenation 
when renal artery stenosis is moderate, this compensatory 
mechanism becomes overwhelmed when vascular occlusion 
reaches between 70% and 80%. Under these circumstances 
cortical hypoxia is overt, leading to activation of the renin-
angiotensin-aldosterone system, loss of kidney function, 
rarefaction of small renal vessels, kidney fibrosis, atrophy, 
and end stage kidney disease designated “ischemic 
nephropathy”.221,223,224-228 The connection between 
atherosclerosis-driven renal hypoxia and CKD is underscored 
by the finding that the preservation of microvascular 
architecture by intra-renal administration of vascular 
endothelial growth factor decreases renal fibrosis and 
maintains renal hemodynamics and function in an experimental 

model of renal artery stenosis.224 In addition, when 
femoropopliteal angioplasty restores the lumen diameter in 
patients with generalized atherosclerosis, the incidence of 
renal disease is dramatically reduced.43 Furthermore, several 
clinical trials have validated renal angioplasty and stenting in 
treating renal artery stenosis, especially in high-risk patients 
with recurrent flash pulmonary edema.229-231 Controversy 
exists as to whether kidney reoxygenation through this 
surgery is superior to that induced by medical therapy. 
Nevertheless, the goal of both strategies is to correct renal 
hypoxia. A goal reinforced by the practice guidelines of the 
American Heart Association and the American College of 
Cardiology Foundation that state the preferred treatment for 
hemodynamically significant renal artery stenosis is improved 
kidney oxygenation.49

Repeated Episodes of Acute Kidney Injury
Acute kidney injury (AKI) is the generic term for an abrupt 
and sustained decrease in renal function that can be reversible 
if treated promptly and appropriately.53 Most major causes of 
AKI produce conditions of hypoxia within the kidney. These 
include sepsis that induces renal vasoconstriction through the 
release of endothelin and the use of radiocontrast imaging 
dyes that increase oxygen consumption for solute reabsorption 
and reduce regional inner medullary blood flow.54-61 More 
generalized reductions in blood flow represent another major 
cause of AKI. These can result from hemorrhage, 
decompensated liver cirrhosis, treatment with non-steroidal 
anti-inflammatory drugs, congestive heart failure, and renal 
artery occlusion or stenosis.53 In addition, many forms of 
surgery where blood flow is inadvertently or deliberately 
reduced carry an inherent risk for the development of AKI.62-70 
Inadvertent surgical reductions in blood flow can be caused 
by voluminous blood loss such as often occurs during major 
hepatic resections.64,69 Deliberate blood flow reduction is 
caused by the clamping of major blood vessels such as occurs 
during organ transplantation, cardiopulmonary bypass, and 
thoracoabdominal aneurysm surgery.63,65,66,70 Meta-analysis, 
epidemiological, and clinical follow-up studies have all 
shown a strong correlation between AKI episodes and 
subsequent development of CKD.232-236 This correlation is 
observed even in patients who regained normal renal function 
after AKI.237 Strikingly, both the severity and the number of 
AKI episodes are predictive of CKD development.238,239 These 
data, along with animal studies, have established a causal 
relationship between AKI and the subsequent development of 
CKD.240-242 Induction of AKI in animals by ischemia, 
radiocontrast agents, cisplatin, or rhabdomyolysis all induce 
oxygen tensions below 10 mm Hg deep within kidney 
tissue.95,243-247 In addition, impaired renal oxygenation has also 
been observed in human AKI.248 Importantly, renal hypoxia is 
found not only during the acute phase of AKI but also up to 5 
weeks later, after the recovery phase.243,249,250 This sustained 
hypoxia results in the kidney down-regulating pro-angiogenic 
isoform 164 and up-regulating dys-angiogenic isoforms 120 
and 188 of vascular endothelial growth factor A 
(VEGF-A).251,252 As a consequence, the vascular architecture 

Shelley, et al.CM&R 2016 : 1 (March)



20 Hypoxia and chronic kidney disease CM&R 2016 : 1 (March)

Table 1. Targeting renal hypoxia: current and potential future treatments for chronic kidney disease
Hypoxia pathology Therapeutic strategy
Systemic hypo-oxygenation Erythropoiesis induction110-112

Continuous positive airway pressure (CPAP)81,83,87,377

Hyperbaric oxygen therapy (HBOT)378

Vasoconstriction Renal angioplasty and/or stenting49

Vasopressin v2 receptor inhibition379

Renin inhibition380

Angiotensin II type 1 receptor inhibition381

Angiotensin-converting enzyme inhibition381

Voltage-dependent calcium channel inhibition382

Endothelin receptor inhibition268,383

L-arginine vasodilation155,250

Kallikrein vasodilation298

Microvascular rarefaction Platelet-derived growth factor receptor β inhibition252

Vascular endothelial growth factor receptor 2 inhibition252

Vascular endothelial growth factor 121 administration400

Angiopoietin 1 administration401

3-hydroxy-3-methyl-glutaryl-CoA reductase inhibition223

MicroRNA 93 vascular endothelial growth factor inhibitor inhibition402

Oxidative stress Bendavia mitochondria protection403

Pirfenidone mitochondrial protection404

Mammalian target of rapamycin inhibition405

Antioxidant administration406

Nuclear factor erythroid 2-related factor 2 mild induction407

Uncoupling protein 2 inhibition408

Hemeoxygenase 1 induction409

Semicarbazide-sensitive amine oxidase inhibition410

AMP-activated protein kinase activation411

Nitric oxide induction412

Phosphodiesterase inhibition413

Soluble epoxide hydrolase inhibition414

Nicotinamide adenine dinucleotide phosphate oxidase inhibition415

Transforming growth factor β type I receptor inhibition416

Cyclooxygenase 2 inhibition417

Leukocyte recruitment Stem cell administration418

Hypoxia-inducible factor 1α inhibition in leukocytes262

Purine-rich binding protein α inhibition in leukocytes262

Dipeptidyl peptidase 4 inhibition419

Palmitoylethanolamide administration420

D-series resolvin administration421

Protectin D1 administration421

Herbal astragalus administration422

Mothers against decapentaplegic homolog 7 administration423

C-C chemokine receptor type 1 inhibition424

C-C chemokine receptor type 2 inhibition425

of the kidney fails to be maintained with reductions in 
capillary number as well as individual capillary caliber and 
area.252-255 Thus, the initial hypoxia insult caused by an 
episode of AKI is consolidated by subsequent capillary 
rarefaction that reduces oxygen delivery. This chronic 
hypoxia then induces a slew of pathological processes in 
tubular epithelial cells including apoptosis, the prevention of 
redifferentiation after regeneration and conversion to 
myofibrolasts.256-260 Hypoxia also induces monocytes to 
express the β2 integrin family of adhesion molecules and 

kidney cells to express vascular cell adhesion molecule 1 and 
intracellular adhesion molecule 1 as well as the monocyte 
chemo-attractants C-C motif ligand 2 and C-X3-C motif 
ligand 1.252,261-264 These hypoxia-dependent changes in gene 
expression appear mediated in part by chromatin-remodeling, 
histone modification and the transcription factors HIF-1 and 
purine-rich binding protein alpha (Purα).261-265 Therefore, by 
inducing pro-inflammatory adhesion molecules and 
chemokines, hypoxia causes the accumulation of macrophages 
in the kidney that produce profibrotic cytokines such as 



21

transforming growth factor β and activate renal 
fibrobalsts.100,101,253 Hypoxia also activates fibroblasts directly 
to increase extracellular matrix deposition by increasing 
production of collagen and tissue inhibitor of metalloproteinase 
I and decreasing expression of collagenase.266 This activation 
of fibroblasts, along with the recruitment of inflammatory 
cells and the damage done to tubular epithelial cells, all lead 
to tubulointerstitial fibrosis. This fibrosis, in turn, aggravates 
hypoxia by increasing the distance between capillaries and 
tubular epithelial cells, leading to reduced oxygen diffusion 
efficiency.97 Consequently, hypoxia and tubulointerstitial 
fibrosis form a pathologic cycle that results in the progression 
of CKD (figure 1).242 The cycle is exacerbated by hypoxia-
inducing gene-activating histone modifications that 
up-regulate expression of endothelin 1, thus, reducing oxygen 
delivery to the kidney by vasoconstriction.267,268 

Sleep Apnea
Sleep apnea occurs in approximately 60% of patients with 
CKD.74-76 This prevalence is much higher than the 20% rate 
found in the general population.269 There are two main types 
of sleep apnea, termed obstructive and central.71-73 Obstructive 
sleep apnea is characterized by abnormal collapse of the 
pharyngeal airway, while central sleep apnea is characterized 
by a chronic lack of drive to breath. Sleep apneas are very 
common, affecting about 16% of men and 5% of women 
between 30 and 65 years-of-age. Cross-sectional cohort 
studies have demonstrated a significant direct association 

between the severity of sleep apnea and the severity of renal 
dysfunction.270-276 In addition, cohort studies of the longitudinal 
relationship between sleep apnea and kidney function show 
that apnea is independently associated with an increased risk 
of accelerated loss of kidney function.277,278 Conversely, as 
kidney function declines, the prevalence of sleep apnea and 
nocturnal hypoxia increases.272 Furthermore, aggressive 
dialysis has been found to improve obstructive sleep apnea. 
These findings have led to the contention that sleep apnea and 
CKD have a bidirectional relationship with both diseases 
being a risk factor for the other.279 CKD may lead to sleep 
apnea by autonomic nerve damage, effected by generalized 
uremic neuropathy, interfering with baroreceptor activity, 
pharyngeal narrowing due to fluid overload, and accumulation 
of uremic toxins.279-284 Sleep apnea likely causes CKD 
through numerous mechanisms that promote renal 
hypoxia.285,286 The most obvious mechanism is that apnea 
causes insufficient or absent ventilation, compromised gas 
exchange, and, thus, intermittent nocturnal hypoxia.77-81,83-86 
Long-term exposure to these recurrent episodes of hypoxia-
reoxygenation activate nicotinamide adenine dinucleotide 
phosphate-oxidase 2 that consumes oxygen through its 
generation of reactive oxygen species.287-291 Tissue damage 
effected by these species is augmented by intermittent 
hypoxia reducing renal expression of antioxidants.292 In 
addition, intermittent hypoxia induces the sympathetic 
nervous system to increase vascular resistance, down-
regulates expression of the kallikrein-kallistatin vasodilator 
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Fibrosis Aldosterone inhibition304

Kinin B1 receptor inhibition426

Chemokine C-C motif ligand 2 inhibition427

Angiotensin II inhibition428

A2B adenosine receptor inhibition429

Connective tissue growth factor inhibition430

Epidermal growth factor receptor inhibition431

Platelet-derived growth factor inhibition432

β-catenin inhibition433

Protein kinase C inhibition434

Potassium calcium-activated channel protein KCa3.1 inhibition435

Stromal cell derived factor 1α administration436

Hepatocyte growth factor administration437

Inosine monophosphate dehydrogenase inhibition438

Bone morphogenic protein 7 administration439

Collagen synthesis inhibition440

Tumor necrosis factor α inhibition441

Notch intracellular signaling inhibition442

p38 mitogen-activated protein kinase inhibition443

Homeo-domain interacting protein kinase 2 inhibition444

Cardiac myocyte-derived follistatin-like 1 administration445

Transforming growth factor β inhibition446

Pro-fibrotic metalloproteinase inhibition447

Anti-fibrotic metalloproteinase activation447

Destabilization of renal Remote ischemic pre-conditioning384-390

hypoxia-inducible factor Prolyl hydroxylase inhibition244,448

von Hippel-Lindau protein inhibition449

Table 1 Continued.
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pathway, and activates the renal renin-angiotensin-aldosterone 
system to cause vasoconstriction.293-299 Together these 
processes conspire to produce renal fibrosis and sustained 
hypertension and their associated means of reducing renal 
oxygenation (figure 1).82,300-304 Oxygenation is further 
compromised by nocturnal hypoxia altering parasympathetic 
control of heart rate and inducing left ventricular 
hypertrophy.305,306 An additional consequence of sleep apnea is 
that it activates nuclear factor κB, initiating a cascade of 
events that include increased production of tumor necrosis 
factor α, interleukin 6, interleukin 8, interleukin 18, C-reactive 

protein, and C-C motif ligand 2.307-309 The resulting systemic 
inflammation, together with apnea-induced reactive oxygen 
species, hypertension, and platelet aggregability, drives the 
development of atherosclerosis and its mechanisms of 
generating renal hypoxia (figure 1). Indeed, chronic 
intermittent hypoxia linked with a high-fat diet has been 
shown to cause the de novo generation of atherosclerotic 
plaques.310 The profound consequences of atherosclerosis 
induced by sleep apnea are evident by it being an independent 
risk factor for cardiovascular mortality both in the general 
population and in patients with ESRD.76,84,311-316 Renal 
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Figure 1. The hypoxia cycle driving chronic kidney disease. A constellation of environmental, behavioral, and 
physiologic risk factors reduce systemic oxygenation. In many cases these conditions exacerbate one another. 
Due to its vascular architecture and physiologic function, the kidney is particularly vulnerable to lowered oxygen 
tensions. This vulnerability is counteracted by defense mechanisms centered around activation of hypoxia-
inducible factor. While these defense mechanisms are effective when periods of hypoxia are brief, they are 
overwhelmed when risk factors cause prolonged hypoxia. Under these circumstances a range of pathological 
cellular processes are activated, all of which aggravate renal hypoxia by metabolically consuming oxygen (red 
arrows). In addition, these processes cause renal fibrosis and vasoconstriction further aggravating hypoxia by 
limiting oxygen diffusion and reducing erythrocyte access (orange arrows). The net result is that a self-reinforcing 
cycle is established in which hypoxia causes cellular pathologies that themselves compromise renal oxygenation. 
The inevitable consequence of this cycle is progressive chronic kidney disease.
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oxygenation is significantly improved by the treatment of 
sleep apnea with continuous positive airway pressure.81 This 
treatment also ameliorates glomerular hyperfiltration, 
improves endothelial function and survival, reduces the 
production of reactive oxygen species, C-reactive protein and 
interleukin 6, increases vasodilator levels, and decreases the 
levels of vasoconstrictors.81,83,87,317-322 That re-oxygenation has 
such a dramatic beneficial influence on renal function further 
underscores the intimate connection between renal hypoxia 
and the pathogenesis of CKD.

The Hypoxia Death Cycle 
Environmental, behavioral, and pathophysiological risk 
factors each, in their own way, reduce systemic oxygenation 
or the specific oxygenation of the kidney. Many of these risk 
factors are inter-related, with one being a risk factor for the 
development of another. Consequently, a perfect storm of 
conditions can develop that pushes the pre-existing condition 
of low oxygen tension in the kidney into the realm of hypoxia 
(figure 1). When this occurs, renal cells initially respond with 
protective mechanisms that center around the phosphorylation 
of extracellular signal-regulated protein kinases 1 and 2 and 
the resulting stabilization of both HIF-1α and HIF-
2α.94-96,292,323-325 These protective mechanisms include the 
up-regulation of pro-angiogenic factors such as isoform 164 
of VEGF-A that protect against capillary rarefaction, and 
increased expression of matrix metalloproteinases that effect 
repair and protect against fibrosis by degrading extracellular 
matrix.326,327 In addition, short-term exposure to hypoxia leads 
to increased renal expression of antioxidants such as nuclear 
factor erythroid 2-related factor 2, hemeoxygenase 1, and 
metallothionein I that protect against fibrosis and inflammation 
induced by reactive oxygen species.94,292,328-330 However, when 
hypoxia is prolonged, there is an up-regulation of natural 
antisense HIF-1α that decreases HIF-1α expression by 
destabilizing its mRNA.331 In addition, increasing levels of 
reactive oxygen species target the HIF-1α protein for 
degradation through the ubiquitin-proteosome system.332,333 
The expression of HIF-2α is unaffected by prolonged hypoxia, 
thus, there is a shift in the quanlitative nature of HIF away 
from subunit 1α and towards subunit 2α.331 This shift in HIF 
expression likely underlies the observation that under 
conditions of prolonged hypoxia the initial protective 
mechanisms of the kidney either fail to be engaged or are 
down-regulated.292,334,335 Thus, the expression of pro-
angiogenic factors such as VEGF-A isoform 164 is repressed, 
and the expression of dys-angiogenic factors such as VEGF-A 
isoforms 120 and 188 is increased, causing capillary 
rarefaction.221,223,251,252 Fibrosis is driven by decreased 
expression of metalloproteinases and increased expression of 
their inhibitors and extracellular matrix proteins.336,337 
Expression of antioxidants either fails to be induced or is 
decreased, allowing increased expression of reactive oxygen 
species to affect tubulointerstitial fibrosis through necrosis, 
apoptosis, activation of interstitial fibroblasts and pericytes, 
proliferation of endothelial cells, and epithelial-mesenchyme 
transition (figure 1).109‑113,259,292,336‑343 In addition, prolonged 

hypoxia causes renal endothelium to produce pro-
inflammatory adhesion molecules, cytokines, and chemokines 
that activate macrophages already resident within the kidney 
and also recruit additional inflammatory cells from the 
circulation.344 Activated macrophages exacerbate the 
inflammatory process by producing additional cytokines such 
as tumor necrosis factor 1α and interleukin 6.345 Furthermore, 
they destroy renal tissue by phagocytosis and promote 
fibrosis by producing pro-fibrotic cytokines, such as 
transforming growth factor β1.346-348 The net result of 
prolonged hypoxia is that a vicious pathological cycle is 
initiated in which fibroblast and inflammatory cell activation 
combine with apoptosis, endothelial proliferation, and 
epithelial-mesenchymal transition to cause tubulointerstitial 
fibrosis. This fibrosis then further drives renal hypoxia by 
limiting oxygen diffusion. In addition, prolonged hypoxia 
also induces the renal cortex to up-regulate expression of the 
potent vasoconstrictor endothelin 1 and its type A receptor.268 
Consequently, the kidney is further “suffocated” to CKD 
(Figure 1).97

A New Hypoxia Paradigm 
The recruitment of inflammatory cells into the hypoxic 
kidney is driven by increased inter-cellular adhesion. This is 
totally dependent upon increased function of adhesion 
molecules expressed both on the surface of inflammatory 
cells and on the surface of kidney tissue.349 Critical adhesion 
molecules on the surface of renal tissue include the selectin 
and intercellular adhesion molecule families.350,351 Particularly 
critical on the leukocyte surface are the anti-adhesion 
molecules CD43 and CD45 and the β2-integrin family of pro-
adhesion molecules.352-355 When leukocytes are not activated, 
they are maintained in the circulation by CD43 and CD45, 
which cover one-third of their surface and extend 45 nm and 
55 nm, respectively, into the extracellular space.356,357 The 
extracellular domains of both CD43 and CD45 are heavily 
decorated with O-linked and N-linked carbohydrate moieties 
that often terminate in sialic acid.358 The strong negative 
charge conferred by this sialic acid, coupled with abundance 
and length, allow CD43 and CD45 to prevent leukocyte 
adhesion. When leukocytes are activated, there is a down-
regulation of CD43 and CD45 along with a reduction in their 
sialylation and a concomitant up-regulation of the pro-
adhesive β2-integrin family.358-363 The induction of this 
reciprocal expression of anti-adhesion and pro-adhesion 
forces results in leukocytes acquiring an adhesive phenotype 
capable of extravasation and infiltration into organs such as 
the kidney (figure 2). 

The β2-integrin family comprises four heterodimers, 
composed of a common beta subunit encoded by the CD18 
gene linked with one of four distinct alpha subunits encoded 
by the CD11a, CD11b, CD11c and CD11d genes.352,353 The 
CD11a/CD18 heterodimer is present on the surface of 
virtually all leukocytes, while CD11d/CD18 is expressed 
predominantly on myelomonocytic cells. CD11b/CD18 is 
expressed on natural killer and mature myeloid cells, and 
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Figure 2. Recruitment of inflammatory leukocytes into renal tissue. When leukocytes (orange spheres) are non-
activated they are maintained in the circulation by repulsive forces conferred by CD43 and CD45 (blue ellipsoids) 
expressed on their surface. Leukocytes are activated by hypoxia either directly or indirectly as a result of 
responding to chemokines and cytokines released from hypoxic kidney tissue. The initial consequence of this 
activation is that the expression of anti-adhesive CD43 and CD45 is reduced allowing leukocytes to engage in 
fast-rolling along arterial cell walls (pink octahedrons) tethered by endothelial selectins (purple ellipsoids) binding 
leukocyte carbohydrate moieties. Fast-rolling is first slowed and then halted by β2-integrins (red ellipsoids) being 
induced on the leukocyte surface and binding endothelial extracellular matrix and intercellular adhesion molecules 
(ICAM-EXMX) (speckled purple ellipsoids). The β2-integrins subsequently mediate extravasation and chemotaxis 
through the traction they impart at the leukocyte leading-surface. Once embedded within renal tissue activated 
leukocytes drive fibrosis through phagocytosis, self-inflicted apoptosis and the release of cytokines and 
chemokines (orange arrowed-crosses) that induce the activation or apoptosis of surrounding cells and recruit 
additional inflammatory cells from the circulation. The vast majority of infiltrating inflammatory leukocytes 
eventually undergo apoptosis. However, a small proportion can remain resident with reduced β2-integrin 
expression and “memory” that allows rapid re-activation.

CD11c/CD18 expression mirrors that of CD11b/CD18, but 
also extends to dendritic cells, some cytotoxic T-lymphocyte 
clones, and some activated B and T-lymphocytes. Since the 
CD18 gene is active in all leukocytes, it is the more selective 
expression of the CD11 genes that dictates the specific cell-
types on which the different CD11/CD18 heterodimers are 
present. The pattern of CD11 and CD18 production dictates 

that during activation macrophages exhibit induced 
expression of all four heterodimers that comprise the 
β2-integrin family. 

The increase in β2-integrin function that occurs during 
leukocyte activation is caused by a number of mechanisms. 
The most rapid increase in function is caused by increased 
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affinity and avidity of β2-integrin molecules already at the 
leukocyte surface.364 The next wave of increased function 
results from the mobilization to the leukocyte surface of pre-
made pools of the β2-integrins.365 Finally, in order that 
leukocyte adhesion can be sustained, there is transcriptional 
induction of the β2-integrin genes.360

Since transcriptional induction of β2-integrin gene expression 
plays a vital role in macrophage function, work was undertaken 
to identify the causative molecular mechanisms.366-371 Using 
transfection analyses and phorbol myristate acetate, it was 
established for each β2-integrin gene that the proximal 
promoter region is sufficient to drive a pattern of inducible 
expression in vitro which mimics that of the endogenous gene 
in vivo.360 In subsequent studies it was determined that 
GA-binding proteins alpha and beta mediate induction of the 
CD18 gene,369 activator protein 1, specificity protein 1 and 
Purα mediate induction of the CD11c gene,368,371  myeloid 
specificity 2 and Purα mediate induction of the CD11a and 
CD11b genes,262,370 and Purα mediates induction of the CD11d 
gene.262

Despite β2-integrin expression being regulated at the 
transcriptional level, accepted dogma held that changes in 
β2-integrin expression relevant to leukocyte function occur 
almost exclusively after protein translation.364,365 This dogma 
was challenged by demonstrating that during hypoxia, 
transcription of the β2-integrin genes is absolutely required 
for leukocytes to exhibit increased adhesion to endo-
thelium.261,262 A second dogma in the field of leukocyte 
function was that hypoxia induces their adhesion not as a 
consequence of their sensing oxygen deprivation directly but 
only indirectly as a consequence of sensing inflammatory 
cytokines released by hypoxic tissue.344-346 Again, this dogma 
was challenged by demonstrating that during hypoxia 
leukocytes exhibit an intrinsic increase in β2-integrin gene 
expression.261,262 

Following activation by hypoxia, recent evidence indicates 
that leukocytes exacerbate the inflammatory microenviron-
ment. Specifically, it has been demonstrated that during acute 
inflammatory disease, infiltrating neutrophils mold the tissue 
microenvironment in ways that significantly promote the 
stabilization of HIF.372 Microarray analysis of epithelial cells 
following β2-integrin-dependent neutrophil transmigration 
identified the induction of a prominent cohort of HIF target 
genes. These studies revealed that transmigrating neutrophils 
rapidly deplete the local environment of molecular oxygen 
and “transcriptionally imprint” the surrounding tissue to 
induce HIF target genes. 

Taken together, recent studies establish a new paradigm in 
which leukocytes can sense hypoxia directly and respond by 
HIF-1 and Purα inducing transcription of the β2-integrin 
genes.261,262 Under normoxic conditions Purα has been shown 
to repress transcription of the CD43 gene.361,362 Consequently, 
this transcription factor appears to act as a master regulator, 

coordinating the reciprocal expression of anti-adhesion and 
pro-adhesion molecules to drive leukocyte adhesion. While 
hypoxia utilizes Purα to induce β2-integrin expression, it 
remains to be determined whether hypoxia represses expression 
of either CD43 or CD45, and if it does, whether Purα is 
involved. However, it is intriguing to note that the expression 
of both CD43 and CD45 is repressed under contitions of 
oxidative stress.373,374

 
Future Directions
It has been demonstrated experimentally that intrarenal 
hypoxia, per se, without confounding factors such as 
hyperglycemia and oxidative stress, can induce 
nephropathy.100,101 In addition, populations such as the Navajo 
Nation and Tibetans who live at high altitudes exhibit 
increased risk of developing CKD independent of glycemic 
control and lipidemia status.375,376 These findings, along with a 
host of other studies, argue strongly in favor of a causal 
relationship between hypoxia and CKD.88-101 As a consequence, 
there is increasing interest in the development of therapeutic 
strategies that target hypoxia and its dependent processes. 
Proof-of-principle of these strategies ranges from experiments 
performed in vitro, to testing in animals, to deployment in the 
clinic. The most evolved methodologies are those aimed at 
improving overall body oxygenation and counteracting artery 
narrowing. Systemic oxygenation strategies include the 
administration of erythropoietin to increase hematocrit levels, 
apparatus to effect continuous positive airway pressure, and 
whole-body chambers to produce an environment of 100% 
oxygen.81,83,87,110-112,377,378 Artery narrowing is already routinely 
counteracted by renal angioplasty with or without stenting and 
the administration of vasoconstriction inhibitors that target the 
renin-angiotensin-aldosterone system.49,379-381 The targeting of 
vasoconstriction pathways controlled through vasopressin, 
endothelin, and voltage dependent calcium channels are in 
their infancy, as is the use of vasodilators such as arginine and 
kallikrein.155,250,268,298,379,382,383 Beyond systemic hypo-
oxygenation and vasoconstriction, the hypoxia-dependent 
processes of microvascular rarefaction, oxidative stress, 
leukocyte recruitment, and fibrosis all contribute to the 
development of CKD. A host of potential therapeutic targets 
exists within these areas (Table 1). However, efficacy remains 
proven predominantly only in vitro or in animals. A notable 
exception is in efforts to stabilize the expression of HIF-1α. 
During periods of brief hypoxia, this factor is induced and is 
renoprotective. Only when hypoxia is prolonged does HIF-1α 
become destabilized, leading to kidney damage. This 
phenomenon has been harnessed in the surgical setting by the 
development of the technique of remote ischemic pre-
conditioning.384 Here repeated brief episodes of hypoxia are 
induced by artery clamping, stent balloon inflation, or applying 
a tourniquet or over-inflated blood-pressure cuff to an arm or 
lower limb. This procedure stabilizes HIF-1α in the kidney, 
thereby conferring protection against a subsequent period of 
prolonged hypoxia.385 Pre-conditioning by having cobalt 
chloride in drinking water or by breathing xenon, carbon 
monoxide, or isoflurane gas also stabilizes HIF-1α and confers 
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renoprotection.386-390 The clear limitation of ischemic pre-
conditioning is that it can only be deployed against a defined 
episode of acute hypoxia known to be imminent, such as 
occurs after artery clamping in transplant surgery, or the 
injection of radiocontrast medium. Consequently, effort has 
been applied to develop pharmacological stabilizers of HIF-
1α that can be used to treat conditions characterized by 
prolonged chronic hypoxia. Dominant amongst these efforts 
has been the development of agents that work by inhibiting 
HIF-1α prolyl hydrolases (PHD).391  This family of three 
enzymes naturally down-regulate HIF-1α in a manner that is  
dependent upon 2-oxoglutarate. Pharmacological inactivation 
of the PHD enzymes by 2-oxoglutarate analogues is sufficient 
to stabilize HIF-1α, but it is nonspecific for individual PHD 
isoforms.392 Studies performed in vitro suggest these isoforms 
exhibit some significant differences in substrate specificity. 
PHD3, for example, does not hydroxylate proline 402 within 
the oxygen-dependent degradation domain of HIF-1α, while 
PHD1 and 2 do so efficiently.393,394 Such observations have 
generated significant interest in identifying PHD-modifying 
therapeutics, and a number of PHD inhibitors have been 
described. These include antagonists of alpha-keto-glutarate, 
analogs of naturally occurring cyclic hydroxamates, and 
direct inhibitors of the prolyl hydroxylases.392,395 The most 
mature work in this area is the development of the PHD 
inhibitor FG-4592.396 This agent stabilizes HIF‑1α and is 
currently in phase 2 and 3 clinical trials for the treatment of 
anemia in patients with ESRD. The challenge for the future is 
to develop the full range of hypoxia targets that have 
demonstrated therapeutic potential in the laboratory (Table 1). 
Some that are already in clinical use are being applied in 
combination, such as dual inhibition of angiotensin receptors 
and angiotensin-converting enzyme.397 In addition, triple 
blockade of the aldosterone receptor, angiotensin-converting 
enzyme, and angiotensin receptors is also being evaluated.398 
Other combinations, such as the simultaneous inhibition of  
angiotensin receptors and C-C chemokine receptor type 2, 
have proven more effective than monotherapy in animal 
models.399 Consequently, a future appears at hand when 
deployment of a personalized battery of therapeutics will 
deprive CKD of the hypoxia-driven forces that ferment its 
progression.
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